INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, 2022-23
 Statistics - III, Semesteral Examination, May 4, 2023
 Time: 3 Hours Total Marks: 50

You may use any of the results stated and discussed in class, by stating them explicitly. Calculators/Smart phones are not permitted.

1. Suppose Y is the response and X_{1} and X_{2} are two regressors in an experiment. It is assumed that they all have the same variance σ^{2} and $\operatorname{Cov}\left(Y, X_{1}\right)=\rho=\operatorname{Cov}\left(Y, X_{2}\right), \operatorname{Cov}\left(X_{1}, X_{2}\right)=0$.
(a) For what values of σ^{2} and ρ can we find such a joint probability distribution?
(b) Find the multiple correlation coefficient between Y and $\left(X_{1}, X_{2}\right)$.
(c) Let $Z=X_{1}+X_{2}$ and $T=X_{1}$. Find the partial correlation coefficient, $\rho_{y z . t}$, between Y and Z given T.
$[4+5+5]$
2. Consider the model $\mathbf{Y}=X \beta+\epsilon$, where $X_{n \times p}$ has rank $r=4<p<n$; also $\epsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} I_{n}\right)$. Let $\hat{\beta}$ be the least squares solution of β. Suppose $\beta_{j}-\beta_{j+1}$ are estimable for $j=1,2,3,4$ in this model. Is it possible to test the hypothesis $H_{0}: \beta_{2}=\left(\beta_{1}+\beta_{3}\right) / 2$ versus $H_{1}: \beta_{2} \neq\left(\beta_{1}+\beta_{3}\right) / 2$? Justify your answer. If it is possible, provide the procedure to test at the 5% significance level.
3. Consider the one-way model:

$$
y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, 1 \leq j \leq 10 ; 1 \leq i \leq 4,
$$

where $\epsilon_{i j}$ are i.i.d. $N\left(0, \sigma^{2}\right)$, with the standard identifiability constraints on α_{i}.
(a) Show that $\alpha_{1}-\alpha_{2}$ is estimable.
(b) Compare the Scheffe and Bonferroni versions of $100(1-\alpha) \%$ simultaneous confidence intervals for ($\alpha_{1}-\alpha_{2}, \alpha_{2}-\alpha_{3}, \alpha_{3}-\alpha_{4}, \alpha_{4}-\alpha_{1}$).
4. (a) What is a Quantile-Quantile (Q-Q) plot? Why is it useful in regression analysis?
(b) Explain the role of the following concepts in design of experiments:
(i) randomization, (ii) replication, (iii) blocking.
5. What is logistic regression? Compare it with linear regression

